\(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [187]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 115 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \]

[Out]

2*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d/a^(1/2)-(A+C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a
+a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2*C*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {4140, 4005, 3859, 209, 3880} \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 C \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[(A + C*Sec[c + d*x]^2)/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) - (Sqrt[2]*(A + C)*ArcTan[(Sqrt[a]*T
an[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) + (2*C*Tan[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]
)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4140

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[
(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(b*(m + 1)), Int[(a + b*Csc[e + f*x])^m*Si
mp[A*b*(m + 1) + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !L
tQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 \int \frac {\frac {a A}{2}-\frac {1}{2} a C \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{a} \\ & = \frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {A \int \sqrt {a+a \sec (c+d x)} \, dx}{a}+(-A-C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = \frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}-\frac {(2 A) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {(2 (A+C)) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {2 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 C \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.50 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.10 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (2 C (-1+\cos (c+d x))-2 A \arctan \left (\sqrt {-1+\sec (c+d x)}\right ) \cos (c+d x) \sqrt {-1+\sec (c+d x)}+\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {-1+\sec (c+d x)}}{\sqrt {2}}\right ) \cos (c+d x) \sqrt {-1+\sec (c+d x)}\right ) \tan (c+d x)}{d (-1+\cos (c+d x)) \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(A + C*Sec[c + d*x]^2)/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((2*C*(-1 + Cos[c + d*x]) - 2*A*ArcTan[Sqrt[-1 + Sec[c + d*x]]]*Cos[c + d*x]*Sqrt[-1 + Sec[c + d*x]] + Sqrt[2]
*(A + C)*ArcTan[Sqrt[-1 + Sec[c + d*x]]/Sqrt[2]]*Cos[c + d*x]*Sqrt[-1 + Sec[c + d*x]])*Tan[c + d*x])/(d*(-1 +
Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(249\) vs. \(2(98)=196\).

Time = 0.70 (sec) , antiderivative size = 250, normalized size of antiderivative = 2.17

method result size
parts \(-\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\sqrt {2}\, \ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-2 \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )\right )}{d a}-\frac {C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )\right )}{d a}\) \(250\)
default \(-\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (-A \,\operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {2}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+A \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+C \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}-2 C \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{d a}\) \(270\)

[In]

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-A/d/a*(a*(1+sec(d*x+c)))^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(2^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(
d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))-2*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)))-C/d/a*(a*(1+sec(d*x+c)))^(1/2)*(ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-
cot(d*x+c)+csc(d*x+c))*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2*cot(d*x+c)-2*csc(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.70 (sec) , antiderivative size = 427, normalized size of antiderivative = 3.71 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 2 \, {\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 4 \, C \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {2 \, {\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, C \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right ) + a d}\right ] \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(d
*x + c) + 1)) - 2*(A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)
/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 4*C*sqrt((a*cos(d*x + c)
+ a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), -(2*(A*cos(d*x + c) + A)*sqrt(a)*arctan(sqrt((a*cos
(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*C*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)
)*sin(d*x + c) - sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) + a*d)]

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/sqrt(a*(sec(c + d*x) + 1)), x)

Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/sqrt(a*sec(d*x + c) + a), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int((A + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(1/2), x)